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Trimability and Fast Optimization of 
Long–Short Portfolios

Bruce I. Jacobs, Kenneth N. Levy, CFA, and Harry M. Markowitz

Optimization of long–short portfolios through the use of fast algorithms takes advantage of models
of covariance to simplify the equations that determine optimality. Fast algorithms exist for widely
applied factor and scenario analysis for long-only portfolios. To allow their use in factor and scenario
analysis for long–short portfolios, the concept of “trimability” is introduced. The conclusion is that
the same fast algorithms that were designed for long-only portfolios can be used, virtually
unchanged, for long–short portfolio optimization—provided the portfolio is trimable, which usually
holds in practice.

ong–short portfolios can take many forms,
including market-neutral equity portfolios
that have a zero market exposure and
enhanced active equity portfolios that have

a full market exposure, such as 120–20 portfolios
(with 120 percent of capital long and 20 percent
short). We describe a sufficient condition under
which a portfolio optimization algorithm designed
for long-only portfolios will find the correct long–
short portfolio, even if the algorithm’s use would
violate certain assumptions made in the formula-
tion of the long-only problem.1 We refer to this
condition as the “trimability condition.” The
trimability condition appears to be widely satisfied
in practice.

We also discuss the incorporation of practical
and regulatory constraints into the optimization of
long–short portfolios. A common assumption of
some asset-pricing models is that one can sell a
security short without limit and use the proceeds
to buy securities long. This assumption is mathe-
matically convenient, but it is unrealistic. In addi-
tion, actual constraints on long–short portfolios
change over time and, at a given instant, vary from
broker to broker and from client to client. The port-
folio analyst charged with generating an efficient
frontier must take these constraints into account.
To our knowledge, all such constraints—whether
imposed by regulators, brokers, or the investors
themselves—are expressible as linear equalities or

weak inequalities. Therefore, they can be incorpo-
rated into the general portfolio selection model.

In the upcoming sections, we define the gen-
eral mean–variance problem and outline some of
the constraints on portfolio composition in the real
world. We then show how the general mean–
variance problem can be solved rapidly with a
factor, scenario, or historical model by diagonal-
ization of the covariance matrix. We next present
the modeling of long–short portfolios and derive
a condition under which these fast optimization
techniques apply. And we illustrate the results.

General Mean–Variance Problem
Consider a portfolio consisting of n securities with
expected returns μ1, μ2, . . ., μn. The portfolio can
include both risky and riskless securities. The port-
folio’s expected return, EP, is a weighted sum of the
n security returns:

(1)

where x1, x2, . . ., xn are the security weights in the
portfolio. If the covariance between the returns of
security i and security j is σij , the portfolio’s return
variance, VP ,  is

(2)

In addition, security weights may be subject to
various constraints. For long-only portfolios, com-
mon constraints include the following:

(3)
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and

(4)

where m is the number of constraints.2 Equation 3
might include, for example, a budget constraint
according to which the sum of the weights must
equal a fixed number. Equation 4 is a nonnegativity
constraint.

The general single-period mean–variance
portfolio selection problem is to find all efficient
portfolios (characterized in terms of portfolio
expected return EP and associated portfolio return
variance VP) for all security expected returns μi and
covariances σij in Equations 1 and 2 and all con-
straint coefficients ajk and bj in Equations 3 and 4.

Long–Short Constraints in Practice
For a long–short portfolio, the sign of xi is not
constrained. A negative value of xi is interpreted as
a short position.3 In addition, the capital asset pric-
ing model (CAPM) often assumes that the long–
short portfolio is subject only to the full investment
constraint,

(5)

Equation 5 is unrealistic as a sole constraint,
however, because it permits a portfolio such as the
following:

(6)

for all real z. In such a portfolio, an investor could,
for example, deposit $1,000 with a broker, short
$1,000,000 of Stock A, and use the proceeds plus the
original deposit to purchase $1,001,000 of Stock B.
Short positions do not, in fact, work this way.

No single constraint set applies to all long–
short investors. The portfolio analyst must model
the specific set of constraints for the particular
investor. To our knowledge, however, all relevant
constraints on long–short portfolios can be accom-
modated if one adopts the convention of represent-
ing an n-security long–short portfolio in terms of
2n nonnegative variables, x1, . . ., x2n, in which the
first n variables represent the securities in a given
set held long, the second n variables represent
short sales in the same set of securities, and one
chooses the long–short portfolio subject to the fol-
lowing constraints:4

(7)

and

(8)

For the remainder of this article, we assume that
long-only portfolios are subject to the constraints of
Equations 3 and 4 and long–short portfolios are
subject to the constraints of Equations 7 and 8. To
illustrate what these assumptions may involve, we
outline a few real-world short-sale constraints.

Constraint Equations 7 and 8 subsume the
budget (or full investment) constraint, with ajk = 1
and bj = 1 for all k and for one value of j chosen to
be the index of the equation that implements the
constraint. Similarly, constraint Equations 7 and 8
may include upper and lower bounds on any par-
ticular security. For example, an upper bound of U
on the short selling of security i is accomplished by
including a new nonnegative slack variable, xs,
setting bj = U, and letting ajk = 1 if k ∈{n + i,s} or
ajk = 0 otherwise.

Another important constraint, one that is also
a special case of Equations 7 and 8, is Regulation T
of the U.S. Federal Reserve Board. Reg T margin
requirements apply to common stock, convertible
bonds, and equity mutual funds. Reg T requires
that the sum of the long positions plus the sum of
the (absolute value of) short positions not exceed
twice the equity in the account. Using the conven-
tion of representing a long–short portfolio of n
securities in terms of 2n nonnegative variables, a
generalized form of Reg T requires that

(9)

Reg T currently specifies H = 2. As a matter of
policy, the broker or investor may set H at a lower
level. This inequality can be converted to an equal-
ity by introduction of a slack variable.5

Constraint Equation 9 is a special case of the
following more general constraint:

where mi represents the net margin requirement of
the ith position. This constraint is more general
than Equation 9, in that it permits a net short mar-
gin requirement that differs from the long margin
requirement and it allows inclusion of securities
that are exempt from Reg T requirements.6 The
inequality in the more general constraint can be
converted into an equality with the use of a nonne-
gative slack variable.

Yet another important constraint is the require-
ment that the total value of the long positions
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minus the total value of the short positions be close
to some investor-specified value v. That is,

(10)

for some given small nonnegative tolerance level τ,
where L is the set of risky securities held long and
S is the set of risky securities sold short.

Two strategies encompassed by constraint
Equation 10 are market-neutral equity strategies
and enhanced active equity strategies. In market-
neutral equity strategies, the sum of the long posi-
tions equals the sum of the short positions.7 That is,
v = 0. In enhanced active equity strategies, such as
120–20 strategies, the portfolio maintains a full
market exposure and v = 1 (see Jacobs and Levy
forthcoming 2006).

There may be additional constraints on the
choice of the portfolio. For example, some securities
are hard to borrow, so the broker may limit the
amount of the short position or not permit short
positions in a particular security.

Thus, budget constraints, upper and lower
bounds on long and short positions, equality con-
straints on particular positions, market-neutrality
constraints, enhanced active equity constraints,
and generalized Reg T types of constraints can all
be written in the form of constraint Equations 7 and
8. In addition, this 2n formulation can eliminate
unrealistic portfolios, such as that in Equation 6. An
apparent disadvantage of constraint Equations 7
and 8, insofar as portfolio optimization is con-
cerned, is that they allow long and short positions
in the same security. We consider this issue in more
detail later.

Diagonalized Models of Covariance
In general, the covariances, σij, in Equation 2 are
nonzero because the return of any security has at
least some relationship to the return of any other
security. The covariance matrix will be dense, there-
fore, with as many nonzero covariances as there are
pairs of securities.

Markowitz (1959) showed that the solution of
the general mean–variance portfolio selection
problem requires the inversion of the covariance
matrix.8 This inversion is one of the major compu-
tational burdens in portfolio optimization, and to
ease this burden, fast portfolio optimization algo-
rithms have been devised that use rapid methods
of inversion. Many rapid methods are derived by
constructing a mathematical model of the covari-
ance matrix in such a way that the portfolio selec-
tion problem is transformed into a problem

requiring only the inversion of a diagonal matrix.
A diagonal matrix has zeros everywhere except
along the main diagonal; such matrices are partic-
ularly easy to invert.

In this section, we show how three types of
models—factor models, scenario models, and
historical models—can be used to transform the
portfolio selection problem into one requiring the
inversion of a diagonal (or nearly diagonal) matrix.
In problems with a large number of securities,
computation time may differ by orders of magni-
tude between using a dense covariance matrix and
using a diagonal or nearly diagonal covariance
matrix. We consider long-only portfolios here and
extend the results to long–short portfolios in the
following section.

Factor Models.  A factor model of covariance
assumes that the return on a security depends
linearly on the movement of one or more factors
common to many securities (the general market
return, interest rates, etc.) plus the security’s inde-
pendent idiosyncratic term. Specifically, it assumes
that the return on the ith security is

, (11)

where αi is a constant, fk is the return on the kth
common factor, βik is the factor loading, K is the
number of common factors, and ui is an idiosyn-
cratic term assumed to be uncorrelated with uj for
all i ≠ j and uncorrelated with all fk for k = 1, . . ., K.
For simplicity, we also assume that fk is uncorre-
lated with fj for j ≠ k.9

To perform the diagonalization, one intro-
duces fictitious securities, one for each common
factor (see Sharpe 1963; Cohen and Pogue 1967),
with the weight of each fictitious security con-
strained to be a linear combination of the weights
of the real securities. Accordingly, one defines a set
of K fictitious securities with weights y1, . . ., yK in
terms of the real securities as follows:10

(12)

With this definition, the portfolio variance can be
written (see Jacobs, Levy, and Markowitz 2005) in
the form

(13)

where Wk is the variance of fk. Equation 13 expresses
VP as a positively weighted sum of squares in the n
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original securities and K new fictitious securities,
which are linearly related to the original securities
by Equation 12.

Note that the variance expression in Equation
13 contains only two single sums (whereas the
variance expression in Equation 2 contained a
nested double sum). Therefore, Equation 13 can be
written in terms of a diagonal covariance matrix.

Scenario Models. As in the scenario models
analyzed by Markowitz and Perold (1981a, 1981b),
we assume that one of S mutually exclusive scenar-
ios will occur with probability Ps , where s = 1, . . ., S.
If scenario s occurs, the return of the ith security is

(14)

where μis is a constant for scenario s and uis is a
random variable with mean zero and variance Vis.
We assume that uis is uncorrelated with ujs for i ≠ j.

The expected return of the portfolio is

with

To perform the diagonalization, we define a set
of S fictitious securities with weights y1, . . ., yS as
follows:

(15)

With this definition, the variance of the portfolio’s
return can be written (see Jacobs, Levy, and
Markowitz 2005) as

(16)

where

Thus, portfolio variance can be expressed as a pos-
itively weighted sum of squares in the n original
securities and S new fictitious securities, which are
linearly related to the original securities by Equa-
tion 15. Again, therefore, portfolio variance can be
written in terms of a diagonal covariance matrix.

Apart from notation (e.g., using S for K and
Equation 15 for Equation 12), the scenario model is
formally the same as the factor model. That is, the
meanings of the coefficients are different, but with

a change of notation, the portfolio selection prob-
lem with a scenario model of covariance is the same
as that for a factor model of covariance.11

Historical Covariance Models. Consider the
case in which T historical periods (e.g., months or
days) are used to estimate covariances between n
securities (see Markowitz, Todd, Xu, and Yamane
1992). Define a fictitious security

(17)

where rit is the return on the ith security during
period t and  is the ith security’s historical average
return:

Thus, yt is the difference between portfolio return
in the tth period and the portfolio’s average return.

The historical variance of the portfolio is a
constant times

(18)

It is a sum of squares in new, fictitious securities
that are linearly related to the old securities by
Equation 17.

We call the factor models, scenario models,
and historical models described in this section
“diagonalizable models.” In each case, transforma-
tion into the diagonalized form allows one to write
portfolio variance in terms of simple sums (i.e.,
Equations 13, 16, and 18) rather than in terms of
nested double sums, such as in Equation 2. Diago-
nalization transforms the variance expressions
from ones couched in terms of dense covariance
matrices (i.e., matrices containing mostly nonzero
entries) to expressions containing matrices that are
slightly larger but have nonzero entries only along
their diagonals. Inversion of such matrices is trivial.

Modeling Long–Short Portfolios
For this discussion, we adopt the convention
described earlier of representing an n-security long–
short portfolio in terms of 2n nonnegative variables
x1, . . ., x2n. Let ri be the return on security i for i = 1,
. . ., n and rc be the return on cash or collateral. The
portfolio’s return, RP, is then

(19)

The first term on the right of Equation 19 represents
the return contribution of the securities held long.
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The second term represents the contribution of the
securities sold short. The third term represents the
short rebate, where

is the investor’s portion of the interest received on
the proceeds from the short sale of security i. Usu-
ally, hi ≥ 0, but this condition is sometimes violated
for stocks that are hard to borrow and is not
required for our results. Also, usually, hi < 1, but the
case of hi = 1 is conceivable (and is also covered by
our results).12

If no riskless security is ever sold short, we may
modify the second term of Equation 19 to sum only
over the risky securities or we may leave it as is and
impose constraints to force short sales of riskless
securities to be zero.13

For the short positions, let the return be

(20)

Let μi be the expected value of ri for i = 1, . . ., 2n.
Then, the expected return of the long–short port-
folio is

(21)

To diagonalize, we assume a multifactor
model with returns given by Equation 11 and we
define K new fictitious securities, y1, . . ., yK, in terms
of the real securities, as follows:

From this definition, it follows (see Jacobs, Levy,
and Markowitz 2005) that the variance of the port-
folio’s return is

(22)

Equation 22 is the expression for the variance
of the return of a long–short portfolio when a mul-
tifactor covariance model is assumed. Note that,
with the exception of the cross-product terms, Equa-
tion 22 has exactly the same form as Equation 13,
which applied exclusively to long-only portfolios.
The next section demonstrates how the similarity
between these two expressions can be exploited to
derive fast algorithms for long–short portfolios.

Applying Fast Techniques to the 
Long–Short Model
In this section, we consider applying existing fast
(long-only) portfolio optimizers to the long–short

portfolio selection problem. In particular, we con-
sider the conditions under which a portfolio opti-
mizer that ignores the cross-product terms in
Equation 22 will still produce the correct efficient
frontier. If one obtains the correct long–short effi-
cient frontier even when ignoring those terms, then
existing fast long-only portfolio optimizers can be
used for long–short portfolios; the only change nec-
essary will be the addition of n new variables to
represent the short positions.

For this analysis, it is useful to define a “trim”
portfolio as a long–short portfolio that has no
simultaneous long and short positions in the same
security. That is, a trim portfolio has

because either xi or xn+i is zero, or both are zero.
Trim portfolios have the useful property that, for
them, Equation 22 has precisely the same form as
Equation 13.

It is also useful to define the following modi-
fied variance:

(23)

For trim portfolios, the modified variance, , in
Equation 23 is precisely equal to the original vari-
ance, VP, of Equation 22. We will refer to the port-
folio selection model with appropriate constraints
and (EP,VP) given by Equations 21 and 22 as the
original model. We will refer to the portfolio selec-
tion model that is the same except that VP  from
Equation 22 is replaced with  from Equation 23
as the modified model.

An important case in which an efficient set of
portfolios for the modified model is always an
efficient set for the original model is the diagonal-
ized historical model. Equation 18 for the historical
model is analogous to Equations 13 and 16 for the
factor and scenario models. However, the equation
for the historical model, unlike those for the other
models, contains only a term involving the ficti-
tious securities, no term involving Vi (see Jacobs,
Levy, and Markowitz 2005). Therefore, 
Here, we are making no assumption about the
constraint set or expected returns other than the
background assumptions that the model is feasible
(i.e., meets the specified constraints) and has effi-
cient portfolios.

Trimability.  For the factor and scenario mod-
els described earlier, an efficient set of portfolios for
the modified model is not always an efficient set for
the original model. For the factor and scenario
models, a further assumption is needed for such an
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identity to hold. In particular, what is needed is the
ability to transform a feasible portfolio that is not
trim into a feasible portfolio that is trim in such a
way that the transformation does not reduce the
portfolio’s expected return. We call this ability the
“trimability condition.”14 A portfolio selection
model that satisfies it is called “trimable.”

In other words, for a guarantee that an efficient
set for the modified model is an efficient set for the
original model, we must be able to do the following:
• remove the overlap from simultaneous long

and short positions in each security in such a
way that the smaller of the two positions
diminishes to zero,

• add the overlap to a risk-free security holding,
• leave all other risky security holdings un-

changed,
• maintain feasibility, and
• not reduce the expected return of the portfolio.
If we can remove all simultaneous long and short
positions in the same securities in this way, the
resulting portfolio is trim.15

Although models with arbitrary constraint sets
may not satisfy the trimability condition, a wide
variety of constraints met in practice do satisfy it.
Suppose, for example, that the choice of a long–
short portfolio is subject to the following:
• the nonnegativity requirement (Equation 8); 
• the budget constraint,

(24)

where xc is a cash balance and xb is an amount
borrowed;16 and 

• any or all of the following constraints:
A. a Reg T type of constraint as in Equation 9,

perhaps with H > 2 for an investor not
subject to Reg T,

B. upper bounds on individual long or short
positions, and/or

C. the requirement that the total value of the
long positions be related to the total value
of the short positions, as in constraint
Equation 10.

If a portfolio holding simultaneous long and
short positions in the same security meets any or all
of the above constraints, then a trimmed version of
the portfolio also meets the constraints. Also, the
expected return of the trimmed portfolio is greater
than or equal to EP. 

Thus, on the one hand, a constraint set consist-
ing of the nonnegativity constraint, budget con-
straint, and any or all of A, B, and C does satisfy the
trimability condition. Note that the trimability con-
dition requires only that the trimmed portfolio be

feasible, not that it necessarily be efficient; thus, the
investor need not be concerned, in checking the
trimability condition, that, say, the trimmed port-
folio might be improved by reducing the amount
borrowed rather than increasing the cash balance
in case xb > 0.

On the other hand, for an example of a
constraint set that does not satisfy the trimability
condition, consider an upper bound on the hold-
ing of cash:

(25)

If there are no upper bounds on the other xi, then
the portfolio composed of the maximum amount of
cash (i.e., xc = Uc) plus overlapping long and short
positions in any one security (say, x1 = xn+1 =1 – Uc)
and no holding of any other security is feasible.
However, x1 and xn+1 cannot be reduced because
the cash variable cannot be adjusted in the manner
required by the trimability condition without vio-
lating constraint Equation 25.

Consequences of Trimability. If the trimabil-
ity condition holds in the original model, then each
efficient (EP,VP) combination has one and only one
trim portfolio with the same (EP,VP) , although
there may be efficient portfolios with this (EP,VP )
that are not trim (see Jacobs, Levy, and Markowitz
2005). Also, if the trimability condition holds in the
original model, then the modified model has the
same set of efficient (EP,VP)  combinations as does
the original model, and it has a unique set of effi-
cient portfolios [one for each efficient (EP,VP)  com-
bination] that is the same as the unique set of trim
efficient portfolios in the original model.

These facts assure us that for factor and sce-
nario models, when the trimability condition holds,
we can naively use a portfolio optimizer that
assumes variance is given by Equation 23 (thereby
knowingly ignoring the negative correlation
between ui and un+i) and still get the correct long–
short efficient frontier.

When the trimability condition does not hold,
we may not get the correct efficient frontier if we
ignore the cross-product terms. For example, con-
sider a diagonalized model with a Reg T constraint
(with H = 2), a budget constraint as in Equation 24,
and an upper bound on cash (Uc < 1.0). In the
original model, the portfolio with
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is feasible and has zero variance. Therefore, zero
variance is feasible and some portfolio (not neces-
sarily the above portfolio) has zero variance and is
efficient. But the modified version of this model has
no feasible zero-variance portfolios: The upper
bound on cash implies that the portfolio must hold
a positive amount of some risky security, which
implies that the portfolio variance is greater than
zero. Thus, in the absence of some assumption such
as the trimability condition, an efficient set for the
modified model may not be an efficient set for the
original model.

Example
In this section, we provide an example of a three-
security, one-factor, long–short model subject
only to Reg T, the budget constraint, and nonneg-
ativity constraints. In this case, Equation 11 may
be written as

The tables illustrate the example. In all tables, the
long positions in the three securities are labeled 1L,
2L, and 3L and short positions are labeled 1S, 2S,
and 3S.

Table 1 presents inputs for the long positions
in the three securities. It also shows the lending rate
and the borrowing rate. The variance of underlying
factor f, V(f), is 0.04.

The betas of the securities, their idiosyncratic
variances, and the variance of the underlying factor
can be used to compute the covariances between
the long positions according to the formulas

and

The result of this calculation for the present exam-
ple is shown in Table 2.

For a long-only portfolio analysis, the covari-
ance matrix for a one-factor model can be trans-
formed into a sum of squares by introducing a new
variable, the portfolio beta (PB), as in Equation 12.
Table 3 shows the covariance matrix for this four-
security version of the three-security single-factor
model. The covariance matrix is now diagonal,
with nonzero entries on the diagonal, rather than
the dense covariance matrix such as that shown in
Table 2.

The advantage of diagonalizing the covariance
matrix increases with the number of securities in
the portfolio analysis. To illustrate, the second col-
umn of Table 4 shows the number of input coeffi-
cients required by the diagonal model of
covariance—namely, n betas, n idiosyncratic vari-
ances, and one factor f variance. The third column
of Table 4 shows the number of unique covariances
needed by a computation using an arbitrary cova-
riance matrix—namely, n(n + 1)/2. Specifically,
with three securities, there are actually more coef-
ficients in the diagonal model than in the nondiag-
onalized version. With 5,000 securities, the
diagonal model works with about 10,000 coeffi-
cients whereas the 5,000 × 5,000 covariance matrix

Table 1. Illustrative Three-Security 
One-Factor Model

Security, i
Expected
Return, μi Beta, βi

Idiosyncratic
Variance, Vi

Rebate
Fraction, hi

1L 0.10 0.80 0.0768 0.5

2L 0.12 1.00 0.1200 0.5

3L 0.16 1.25 0.1875 0.5

Lending rate 0.03 0.00 0.0000 na

Borrowing rate 0.05 0.00 0.0000 na

na = not applicable.

r f u ii i i i= + + =α β , , , .for 1 2 3

cov , ,r r V f i ji j i j( ) = ( ) ≠β β for

V r V f V ii i i( ) = ( ) + =β2 1 2 3, , , .for

Table 2. Covariances between Long Positions
1L 2L 3L

1L 0.1024 0.0320 0.0400

2L 0.0320 0.1600 0.0500

3L 0.0400 0.0500 0.2500

Table 3. Covariances When Dummy Security 
Is Included

1L 2L 3L PB

1L 0.0768 0.0000 0.0000 0.0000

2L 0.0000 0.1200 0.0000 0.0000

3L 0.0000 0.0000 0.1875 0.0000

PB 0.0000 0.0000 0.0000 0.0400

Table 4. Number of Unique Coefficients 
Required by Model of Covariance

Number of
Securities

With Dummy
Security

Without Dummy 
Security

3 7 6

20 41 210

100 201 5,050

500 1,001 125,250

1,000 2,001 500,500

3,000 6,001 4,501,500

5,000 10,001 12,502,500
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of the general model has more than 12 million
unique covariances (counting σij = σji as one cova-
riance). Both versions of the model also need n
expected returns.

The two versions will perform the same num-
ber of iterations and arrive at the same efficient
frontier. The work per iteration depends on how
many securities are in the portfolio and on the total
number of securities considered for inclusion. For
moderate to large portfolios, much less work is
required by the diagonal model per iteration. If the
portfolio contains nI securities, the Sharpe algo-
rithm requires a few more than 3n + 7nI multipli-
cations and divisions plus 3n + 5nI additions,
whereas  the general  a lgorithm requires

 multiplications and divisions
plus  additions. Thus, if
n = 1,000 and nI = 10 (as at the high-return/high-
variance end of the frontier) or nI = 100 (as might
occur at the low-return/low-variance end of the
frontier), the diagonal model requires, respectively,
3,070 or 3,700 multiplications and divisions for the
iteration whereas the general algorithm requires
25,190 or 269,900. 

Table 5 provides the expected returns, betas,
and idiosyncratic variances for the long and short
securities corresponding to the long securities in
Table 1. The expected returns for the short positions
were computed according to Equation 20. The betas
of the short positions are the negatives of those for
the corresponding long positions, whereas the idio-
syncratic variances are the same for the short posi-
tions as for the corresponding long positions.

The covariances between long and short posi-
tions, presented in Table 6, were derived by repli-
cating Table 2 in the manner necessitated by the
extension of the portfolio to include both long and
short positions. We could compute an efficient
frontier for the long–short model from the
expected returns in Table 5 and the covariance
matrix in Table 6 by using a general portfolio anal-
ysis program that permits an arbitrary covariance
matrix, but using Sharpe’s technique is much more
efficient.

Performing the Sharpe technique of expressing
return as a linear function of the amount invested
in the factor plus the amounts invested in the idio-
syncratic terms produces the covariance for the
long–short model presented in Table 7. Note that
the covariance matrix is no longer diagonalized
because, for example, the 1L idiosyncratic term has
a –1.0 correlation with 1S. 

2nIn 5n 2n2
I nI–+ +

2nIn 3n 2n2
I 2nI–+ +

Table 5. Illustrative Three-Security 
One-Factor Model with Long 
and Short Positions

Security, i
Expected
Return, μi Beta, βi

Idiosyncratic
Variance, Vi

1L 0.100 0.80 0.0768

2L 0.120 1.00 0.1200

3L 0.160 1.25 0.1875

1S –0.085 –0.80 0.0768

2S –0.105 –1.00 0.1200

3S –0.145 –1.25 0.1875

Lending rate 0.030 0.00 0.0000

Borrowing rate 0.050 0.00 0.0000

Table 6. Covariances between Long and Short Positions
1L 2L 3L 1S 2S 3S

1L 0.1024 0.0320 0.0400 –0.1024 –0.0320 –0.0400

2L 0.0320 0.1600 0.0500 –0.0320 –0.1600 –0.0500

3L 0.0400 0.0500 0.2500 –0.0400 –0.0500 –0.2500

1S –0.1024 –0.0320 –0.0400 0.1024 0.0320 0.0400

2S –0.0320 –0.1600 –0.0500 0.0320 0.1600 0.0500

3S –0.0400 –0.0500 –0.2500 0.0400 0.0500 0.2500

Table 7. Covariances When Dummy Security Included
1L 2L 3L 1S 2S 3S PB

1L 0.0768 0.0000 0.0000 –0.0768 0.0000 0.0000 0.0000

2L 0.0000 0.1200 0.0000 0.0000 –0.1200 0.0000 0.0000

3L 0.0000 0.0000 0.1875 0.0000 0.0000 –0.1875 0.0000

1S –0.0768 0.0000 0.0000 0.0768 0.0000 0.0000 0.0000

2S 0.0000 –0.1200 0.0000 0.0000 0.1200 0.0000 0.0000

3S 0.0000 0.0000 –0.1875 0.0000 0.0000 0.1875 0.0000

PB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0400
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If the data in Table 5 are presented to an algo-
rithm that implements Sharpe’s technique, the
algorithm will operate as though the covariance
matrix were, in fact, diagonal—as shown in
Table 8. Satisfaction of the trimability condition
assures us that the efficient frontier computed by
using the diagonal covariance matrix in Table 8 is
the same as the efficient frontier computed by using
the correct covariance matrix in Table 7 and that for
any number of securities, we will get the correct
result, even if we ignore the correlations between
the idiosyncratic terms for a many-factor model, a
scenario model, or a mixed factor-and-scenario
model. It further assures us that the efficient fron-
tier is correctly computed, even if additional con-
straints are imposed on the choice of portfolio—
provided that the constraint set satisfies the
trimability condition.

In the case of the n-security one-factor model
with long and short positions, the advantage of
using the diagonal model rather than a general
model is again given by Table 4. In this case, how-
ever, an n-security long–short model has 2n securi-
ties. If there are 500 securities in the universe, the
diagonal model will be told that there are 1,001
securities whose covariance structure is described
by 2,001 coefficients. In contrast, the general model
would require 500,500 unique covariances.

Summary
Realistic models of long–short portfolio restrictions
can be written as systems of linear equality or ine-
quality constraints. Examples of such constraints
include budget constraints, the Reg T margin
requirement, upper bounds on long or short posi-
tions in individual or groups of assets, and the
requirement that the difference between the sum of
long positions and the sum of short positions be
close to an investor-chosen value. Market-neutral
equity strategies correspond to a chosen value of 0,

and enhanced active equity strategies correspond
to a chosen value of 1.

The speed of portfolio optimization can be
increased significantly by taking advantage of
models (including factor and scenario models) that
define new fictitious securities that are linearly
related to the real securities in such a way that the
covariance matrix of the securities’ returns
becomes diagonal or almost so. Existing fast algo-
rithms take advantage of the resultant sparse, well-
structured sets of equations to increase dramati-
cally the speed of portfolio optimization.

We discussed the conditions under which
such fast algorithms, designed for long-only port-
folios, will produce correct long–short portfolios.
In general, even if long-only positions in n securi-
ties satisfy the assumptions of a factor or scenario
model, a 2n-variable long–short model does not
satisfy these same assumptions. In particular, the
idiosyncratic terms of the long–short model are not
uncorrelated.

Despite this violation of the assumption of no
correlation of the idiosyncratic terms, a portfolio
optimization program that uses factor or scenario
models will compute the correct long–short portfo-
lio as long as the trimability condition holds. The
trimability condition requires that if a portfolio
with short and long positions in the same stock is
feasible, then it is also feasible to reduce both posi-
tions while keeping the holdings of all other risky
securities the same and not reducing the expected
return of the portfolio.

The acceleration in computation that results
from the use of diagonalized versions of factor,
scenario, or historical models is approximately
equal to the ratio of nonzero coefficients in the
equations of the two models. For large problems,
this time saving can be considerable.

This article qualifies for 1 PD credit.  

Table 8. Covariances Based on Consequences of the Trimability Condition
1L 2L 3L 1S 2S 3S PB

1L 0.0768 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2L 0.0000 0.1200 0.0000 0.0000 0.0000 0.0000 0.0000

3L 0.0000 0.0000 0.1875 0.0000 0.0000 0.0000 0.0000

1S 0.0000 0.0000 0.0000 0.0768 0.0000 0.0000 0.0000

2S 0.0000 0.0000 0.0000 0.0000 0.1200 0.0000 0.0000

3S 0.0000 0.0000 0.0000 0.0000 0.0000 0.1875 0.0000

PB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0400
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Notes
1. For detailed derivations and mathematical proofs of the

results presented in this article, see Jacobs, Levy, and
Markowitz (2005).

2. If the constraint set includes inequalities, they can be con-
verted into equalities by using nonnegative “slack vari-
ables.” Slack variables can be interpreted as zero-variance
(riskless) securities.

3. See Jacobs and Levy (2000, 2005). To sell short for any
customer, a broker must borrow the stock to be sold. The
brokerage firm may borrow the stock from itself, typically
from customer stock held in a street name in margin
accounts, or the broker may borrow the stock from another
investor, typically a large institutional investor. Some inter-
mediary may facilitate the process of bringing together
demand and supply of “stock to lend.” Sometimes, a lender
cannot be found for the desired stock. In this case, the stock
cannot be sold short. Furthermore, the lender retains the
right to call back the stock; if the lender does and another
lender is not readily available, the investor must cover the
short position and deliver the stock to the lender. The
proceeds of a short sale are posted as collateral to the lender
of the stock. In fact, if the stock is borrowed from another
investor, the broker must typically put up about 105 percent
of the proceeds. The broker and the stock lender retain a
portion of the interest earned on these proceeds. A large
institutional investor that shorts stock usually receives a
portion of the interest (referred to as a “short rebate”). A
small retail customer who sells short typically receives no
part of the interest.

4. Because the second n variables represent short sales in the
same set of securities, if security i is held long, there will be
a positive entry in xi and if security i is sold short, there will
be a positive entry in xn+i.

5. Constraint Equation 9 with H = 2 is referred to as a 50
percent margin requirement on both short and long posi-
tions. In practice, the nature of this margin requirement is
different for short and long positions. In the case of a long
position, the customer may borrow as much as 50 percent
of the value of the position from the broker. In the case of a
short position, the customer does not borrow money from
the broker; the margin requirement is a collateral require-
ment. Furthermore, the Reg T requirements are for initial
margin—the equity required in the account to establish
initial positions. It does not constrain the value of the posi-
tions maintained after they have been established. The secu-
rity exchanges and brokers, however, do impose
maintenance margin requirements. Consequently, one
motive of the investor in setting her or his own H in con-
straint Equation 9 is to reduce the probability of needing
additional cash for maintenance margin [see Regulation T,
“Credit by Brokers and Dealers” (12 CFR 220), available
online at www.federalreserve.gov/regulations]. Jacobs
and Levy (1993) discussed margin requirements and cash
needed for liquidity. The Reg T initial short margin require-
ment is stated as 150 percent—of which 100 percent is to be
supplied by the proceeds of the sale of the borrowed stock.

6. Reg T can be circumvented in several ways. For example,
hedge funds often set up off-shore accounts, which are not
subject to Reg T. Alternatively, a large hedge fund can
register as a broker/dealer, with a real broker/dealer acting
as the back office. As a broker/dealer, the hedge fund is
subject to broker/dealer capital requirements rather than
Reg T requirements. Broker/dealer capital requirements
allow much more leverage than Reg T. In the extreme, the
only constraint is what the broker imposes on the hedge
fund’s portfolio to assure that, in the case of unfavorable
market movements, the broker is secure. A hedge fund can
also circumvent Reg T by having a broker set up a propri-
etary trading account of its own, which is managed by the

fund. Gains and losses in the proprietary trading account
are transferred to the hedge fund via prearranged swap
contracts. The only constraint imposed by this arrangement
is the broker’s own capital requirements plus whatever
constraints the broker imposes. Rule 15c3-1 of the Securities
Exchange Act of 1934 governing capital requirements for
broker/dealers includes the provision that indebtedness
cannot exceed 1500 percent of net capital (800 percent for 12
months after commencing business as a broker or dealer).
Also lying outside Reg T are certain arrangements that
allow the investor to use noncash collateral, including exist-
ing long positions, to collateralize the shares borrowed to
sell short, which frees up the proceeds from short sales to
be used for further purchases and short sales. (In these
cases, however, as in the exceptions to Reg T noted previ-
ously, the broker/dealer imposes its own constraints on
leverage to assure its own security.) Noncash collateral may
consist of securities or letters of credit and usually amounts
to 100–105 percent of the amount borrowed. Noncash col-
lateral is marked to market, together with the shares bor-
rowed, and the borrower must make good on any shortfall
between the value of the noncash collateral and the value
of the shares borrowed. Gains and losses on the collateral
accrue to the borrower; the lender is generally paid a fee for
the use of the securities.

7. Jacobs, Levy, and Starer (1998, 1999) addressed the condi-
tions under which optimal portfolios that are constrained
to hold roughly equal amounts in long and short positions
are equivalent to optimal portfolios without this constraint.

8. The problem requires the inversion of a bordered covari-
ance matrix (i.e., a covariance matrix onto which is added
bordering coefficients that serve to implement the con-
straints on the portfolio). See, for example, Markowitz
(1987), Markowitz and Todd (2000), and Perold (1984).

9. The mathematical details of the more general case, in which
the factors are not necessarily mutually uncorrelated, are
discussed in Jacobs, Levy, and Markowitz (2005).

10. Sharpe’s diagonalized version of the n-security one-factor
model is frequently considered to be the diagonal model.

11. For models that combine both scenarios and factors, see
Markowitz and Perold (1981a, 1981b).

12. Large institutional investors often perform mean–variance
analysis at an asset-class level and then implement the
asset-class allocations by using index funds or internal or
external fund managers. For instance, if an internal market-
neutral fund borrows shares from, say, an internal large-
capitalization or small-capitalization fund, the allocation of
interest on the proceeds between the borrowing fund and
the lending fund is arbitrary. The institution’s policy might
allocate all the interest to the borrowing fund because the
institution’s policy might prohibit external stock lending,
so the particular interest income would not exist except for
the internal market-neutral fund’s activities.

13. Equation 19 does not include tax considerations and, there-
fore, is applicable to tax-exempt organizations, such as
university endowments and corporate pension plans.

14. This condition is called “Property P” in Jacobs, Levy, and
Markowitz (2005).

15. Another effect of moving the overlap to a riskless security
is that it increases the amount of slack available to the
investor in complying with Reg T.

16. The sum is taken only over long securities. Recall that,
unlike CAPM investors who have Equation 5 as their only
constraint, investors are typically constrained by Reg T
margin requirements and do not get to spend the proceeds
from selling short, although they may share the interest
collected on these proceeds.
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